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Jeremiah D. Deng, Member, IEEE, Christian Simmermacher, and Stephen Cranefield

Abstract—In tackling data mining and pattern recognition
tasks, finding a compact but effective set of features has often been
found to be a crucial step in the overall problem-solving process.
In this paper, we present an empirical study on feature analysis
for recognition of classical instrument, using machine learning
techniques to select and evaluate features extracted from a number
of different feature schemes. It is revealed that there is signifi-
cant redundancy between and within feature schemes commonly
used in practice. Our results suggest that further feature analysis
research is necessary in order to optimize feature selection and
achieve better results for the instrument recognition problem.

Index Terms—Feature extraction, feature selection, music,
pattern classification.

I. INTRODUCTION

MUSIC data analysis and retrieval has become a very
popular research field in recent years. The advance of

signal processing and data mining techniques has led to inten-
sive study on content-based music retrieval [1], [2], music genre
classification [3], [4], duet analysis [2], and, most frequently, on
musical instrument detection and classification (e.g., [5]–[8]).

Instrument detection techniques can have many potential ap-
plications. For instance, detecting and analyzing solo passages
can lead to more knowledge about the different musical styles
and can be further utilized to provide a basis for lectures in mu-
sicology. Various applications for audio editing and audio and
video retrieval or transcription can be supported. An overview
of audio information retrieval has been presented by Foote [9]
and extended by various authors [2], [10]. Other applications
include playlist generation [11], acoustic environment classifi-
cation [12], [13], and using audio feature extraction to support
video scene analysis and annotation [14].

One of the most crucial aspects of instrument classification
is to find the right feature extraction scheme. During the last
few decades, research on audio signal processing has focused
on speech recognition, but few features can be directly applied
to solve the instrument-classification problem.

New methods are being investigated for achieving semantic
interpretation of low-level features extracted by audio signal
processing methods. For example, a framework of low- and
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high-level features given in the MPEG-7 multimedia descrip-
tion standard [15] can be used to create application-specific
description schemes. These can be used to annotate music with
a minimum of human supervision for the purpose of music
retrieval.

In this paper, we present a study on feature extraction and
selection for instrument classification using machine learning
techniques. Features were first selected by ranking and other
schemes. Data sets of reduced features were then generated,
and their performance in instrument classification was further
tested with a few classifiers using cross-validations. Three
feature schemes were considered: features based on human
perception, cepstral features, and the MPEG-7 audio descrip-
tors. The performance of the feature schemes was assessed
first individually and then in combination with each other. We
also used dimension reduction techniques to gain insight on
the right dimensionality for feature selection. Our aim was to
find the differences and synergies between the different feature
schemes and test them with various classifiers, so that a robust
classification system could be built. Features extracted from
different feature schemes were ranked and selected, and a num-
ber of classification algorithms were employed and managed
to achieve good accuracies in three groups of experiments:
instrument-family classification, individual-instrument classifi-
cation, and classification of solo passages.

Following this introduction, Section II reviews the recent
relevant work on musical instrument recognition and audio
feature analysis. Section III outlines the approach that we
adopted in tackling the problem of instrument classification,
including feature extraction schemes, feature selection meth-
ods, and classification algorithms used. Experiment settings and
results based on the proposed approach are then presented in
Section IV. We summarize the findings and conclude the paper
in Section V.

II. RELATED WORK

Various feature schemes have been proposed and adopted
in the literature of instrument sound analysis. On top of the
adopted feature schemes, different computational models or
classification algorithms have been employed for the purposes
of instrument detection and classification.

Mel-frequency cepstral coefficients (MFCC) features are
commonly employed not only in speech processing but also
in music genre and instrument classifications. Marques and
Moreno [5] built a classifier that can distinguish between
eight instruments with 70% accuracy using the support vector
machines (SVM). Eronen [6] assessed the performance of
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MFCC, spectral, and temporal features such as amplitude en-
velope and spectral centroids for instrument classification. The
Karhunen–Loeve transform was conducted to decorrelate the
features, and k-nearest neighbor (k-NN) classifiers were used,
with their performance assessed through cross-validation. The
results favored the MFCC features, and violin and guitar were
among the most poorly recognized instruments.

The MPEG-7 audio framework targets the standardization of
the extraction and description of audio features [15], [16]. The
sound description of MPEG-7 audio features was assessed by
Peeters et al. [17] based on their perceived timbral similarity.
It was concluded that combinations of the MPEG-7 descriptors
could be reliably applied in assessing the similarity of musical
sounds. Xiong et al. [12] compared the MFCC and MPEG-7
audio features for the purpose of sports audio classification,
adopting the hidden Markov models (HMMs) and a number of
classifiers such as k-NN, Gaussian mixture models, AdaBoost,
and SVM. Kim et al. [10] examined the use of HMM-based
classifiers trained on MPEG-7-based audio descriptors in audio
classification problems such as speaker recognition and sound
classification.

Brown et al. [18] conducted a study on identifying four in-
struments of the woodwind family. Features used were cepstral
coefficients, constant Q transform, spectral centroid, and auto-
correlation coefficients. For classification, a scheme using the
Bayes decision rules was adopted. The recognition rates based
on the feature sets varied from 79% to 84%. Agostini et al. [7]
extracted spectral features for timbre classification, and the per-
formance was assessed over SVM, k-NN, canonical discrimi-
nant analysis, and quadratic discriminant analysis, with the first
and the last being the best. Compared with the average 55.7%
correct tone classification rate achieved by some conservatory
students, it was argued that computer-based timbre recognition
can exceed human performance at least for isolated tones.

Kostek [2] studied the classification of 12 instruments played
under different articulations. She used multilayer neural net-
works trained on wavelet transform features and MPEG-7
descriptors. It was found that a combination of these two feature
schemes can significantly improve the classification accuracy
to a range of 55%–98%, with an average of about 70%. Mis-
classifications occurred mainly within each instrument fam-
ily (woodwinds, brass, and strings). A more recent study by
Kaminskyj and Czaszejko [19] dealt with isolated monophonic
instrument sound recognition using k-NN classifiers. Features
used included MFCC, constant Q transform spectrum fre-
quency, root-mean-square (rms) amplitude envelope, spectral
centroid, and multidimension-scaling (MDS) analysis trajecto-
ries. These features underwent principal component analysis
(PCA) for reduction to a total dimensionality of 710. The
k-NN classifiers were then trained under different hierarchical
schemes. A leave-one-out strategy was used, yielding an accu-
racy of 93% in instrument recognition and 97% in instrument-
family recognition.

Some progress has been made in musical instrument iden-
tification for polyphonic recordings. Eggink and Brown [20]
presented a study on the recognition of five instruments (flute,
clarinet, oboe, violin, and cello) in accompanied sonatas and
concertos. Gaussian mixture model classifiers were employed

on features reduced by PCA. The classification performance on
a variety of data resources ranged from 75% to 94%, whereas
misclassification occurred mostly for flute and oboe (with both
classified as violin). Essid et al. [8] processed and analyzed
solo musical phrases from ten instruments. Each instrument
was represented by 15 min of audio material from various CD
recordings. Spectral features, audio-spectrum flatness, MFCC,
and derivatives of MFCC were used as features. An SVM
classifier yielded an average accuracy of 76% with 35 fea-
tures. Livshin and Rodet [21] evaluated the use of monophonic
phrases for instrument detection in continuous recordings of
solo and duet performances. The study made use of a database
with 108 different solos from seven instruments. A set of 62
features (temporal, energy, spectral, harmonic, and perceptual)
was proposed and subsequently reduced by feature selection.
The best 20 features were used for real-time performance. A
leave-one-out cross-validation using a k-NN classifier gave an
accuracy of 85% for 20 features and 88% for 62 features.
Benetos et al. [22] adopted the branch-and-bound search to
extract a six-feature subset from a set of MFCC, MPEG-7, and
other audio spectral features. A nonnegative matrix factoriza-
tion algorithm was used to develop the classifiers, gaining an
accuracy of 95.2% for six instruments.

With the emergence of many audio feature schemes, feature
analysis and selection has been gaining more attention recently.
A good introduction on feature selection was given in the
work of Guyon and Elisseeff [23], outlining the methods of
correlation modeling, selection criteria, and the general ap-
proaches of using filters and wrappers. Yu and Liu [24] dis-
cussed some generic methods such as information gain (IG) and
symmetric uncertainty (SU), where an approximation method
for correlation and redundancy analysis was proposed based
on using SU as the correlation measure. Grimaldi et al. [25]
evaluated selection strategies such as IG and gain ratio (GR) for
music genre classification. Livshin and Rodet [21] used linear
discriminant analysis to repeatedly find and remove the least
significant feature until a subset of 20 features was obtained
from the original 62 feature types. The reduced feature set gave
an average classification rate of 85.2%, which is very close to
that of the complete set.

Benchmarking is still an open issue that remains unresolved.
There are very limited resources available for benchmarking;
therefore, direct comparison of these various approaches is
hardly possible. Most studies have used recordings digitized
from personal or institutional CD collections. The McGill Uni-
versity Master Samples (http://www.music.mcgill.ca/resources/
mums/html/mums.html) have been used in some studies [7],
[19], [20], whereas the music samples from the UIOWA MIS
Database (http://theremin.music.uiowa.edu/) were also widely
used [18], [20], [22].

III. FEATURE ANALYSIS AND VALIDATION

A. Instrument Categories

Traditionally, musical instruments are classified into four
main categories or families: string, brass, woodwind, and per-
cussion. For example, violin is a typical string instrument,
oboe and clarinet belong to the woodwind category, horn and
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TABLE I
FEATURE ABBREVIATIONS AND DESCRIPTIONS

trumpet are brass instruments, and piano is usually classified as
a percussion instrument. Sounds produced by these instruments
bear different acoustic attributes. A few characteristics can be
obtained from their sound envelopes, including attack (the time
from silence to amplitude peak), sustain (the time length in
maintaining level amplitude), decay (the time the sound fades
from sustain to silence), and release (the time of the decay from
the moment the instrument stops playing). To achieve accurate
classification of instruments, more complicated features need to
be extracted.

B. Feature Extraction for Instrument Classification

Because of the complexity of modeling instrument timbre,
various feature schemes have been proposed through acoustic
study and pattern recognition research. Our main intentions
are to investigate the performance of different feature schemes
and find a good feature combination for a robust instrument
classifier. Here, we consider three different extraction methods,
namely, perception-based features, MPEG-7-based features,
and MFCC. The first two feature sets consist of temporal and
spectral features, whereas the last is based on spectral analysis.
These features, 44 in total, are listed in Table I. Among them,
the first 16 are perception-based features, the next seven are
MPEG-7 descriptors, and the last 26 are MFCC features.
1) Perception-Based Features: To extract perception-based

features, music sound samples were segmented into 40-ms
frames with 10-ms overlap. Each frame signal was analyzed
by 40 bandpass filters centered at Bark-scale frequencies. The
following are some important perceptual features used in this
paper.

1) Zero-crossing rate (ZCR), an indicator for the noisiness
of the signal, which is often used in speech-processing
applications

ZCR =

N∑
n=1

|sign(Fn) − sign(Fn−1)|

2N
(1)

where N is the number of digf samples in the frame, and
Fn is the value of the nth sample of a frame.

2) Root mean square (rms), which summarizes the energy
distribution in each frame

rms =

√√√√√
N∑

n=1
F 2

n

N
. (2)

3) Spectral centroid, which measures the average frequency
weighted by the sum of spectrum amplitude within one
frame

Centroid =

K∑
k=1

P (fk)fk

K∑
k=1

P (fk)
(3)

where fk is the frequency in the kth channel, K = 40
is the number of channels, and P (fk) is the spectrum
amplitude on the kth channel.

4) Bandwidth (also referred to as the centroid width), which
shows the frequency range of a signal weighted by its
spectrum

Bandwidth =

K∑
k=1

|Centroid − fk|P (fk)

K∑
k=1

P (fk)
. (4)

5) Flux, representing the amount of local spectral change,
which is calculated as the squared difference be-
tween the normalized magnitudes of consecutive spectral
distributions

Flux =
K∑

k=2

|P (fk) − P (fk−1)|2 . (5)

These features were extracted from multiple segments of a
sample signal, and the mean value and standard deviation were
used as the feature values for each sound sample.
2) MPEG-7 Timbral Features: Instruments usually have

some unique properties that can be described by their harmonic
spectra and their temporal and spectral envelopes. The MPEG-7
audio framework [15] endeavors to provide a complete feature
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set for the description of harmonic instrument sounds. We
consider in this paper only two classes of timbral descriptors in
the MPEG-7 framework: timbral spectral and timbral temporal.
These include seven feature descriptors: harmonic centroid
(HC), harmonic deviation (HD), harmonic spread (HS), har-
monic variation (HV), spectral centroid (SC), log attack time
(LAT), and temporal centroid (TC). The first five belong to the
timbral spectral feature scheme, whereas the last two belong to
the timbral temporal scheme. Note that the SC feature value was
obtained from the spectral analysis of the entire sample signal;
thus, it is similar to but different from the CentroidM of the
perception-based features. CentroidM was aggregated from the
centroid feature extracted from short segments within a sound
sample.
3) MFCC Features: To obtain MFCC features, a signal

needs to be transformed from frequency (hertz) scale to mel
scale

mel(f) = 2595 log10

(
1 +

f

700

)
. (6)

The mel scale has 40 filter channels. The first extracted fil-
terbank output is a measure of power of the signal, and the
following 12 linearly spaced outputs represent the spectral
envelope. The other 27 log-spaced channels account for the
harmonics of the signal. Finally, a discrete cosine transform
converts the filter outputs to give the MFCCs. The mean and
standard deviation of the first 13 coefficients thus obtained were
extracted for classification.

C. Feature Selection

Feature selection techniques are often necessary for optimiz-
ing the feature sets used in classification. This way, redundant
features are removed from the classification process, and the di-
mensionality of the feature set is reduced to save computational
cost and defy the “curse of dimensionality” that impedes the
construction of good classifiers [23]. To assess the quality of a
feature used for classification, a correlation-based approach is
often adopted. In general, a feature is good if it is relevant to the
class concept but is not redundant given the inclusion of other
relevant features. The core issue is modeling the correlation
between two variables or features. Based on information theory,
a number of indicators can be developed to rank the features
by their correlation to the class. Relevant features will yield a
higher correlation.

Given a prediscretized feature set, the “noisiness” of the
feature X can be measured as the entropy, which is defined as

H(X) = −
∑

i

P (xi) log2 P (xi) (7)

where P (xi) is the prior probability for the ith discretized value
of X . The entropy of X after observing another variable Y is
then defined as

H(X|Y ) = −
∑

j

P (yj)
∑

i

(P (xi|yj) log2 P (xi|yj)) . (8)

The IG [26], indicating the amount of additional information
about X provided by Y , is given as

IG(X|Y ) = H(X) − H(X|Y ). (9)

IG itself is symmetrical, i.e., IG(X|Y ) = IG(Y |X), but in
practice, it favors features with more values [24].

The GR method normalizes IG by an entropy term

GR(X|Y ) =
IG(X|Y )
H(Y )

. (10)

A better measure is defined as the symmetrical uncer-
tainty [27]

SU(X|Y ) = 2
IG(X|Y )

H(X) + H(Y )
. (11)

SU compensates for IG’s bias toward features with more values
and restricts the value range within [0, 1].

Despite a number of efforts previously made using the
aforementioned criteria [24], [25], there is no golden rule
for the selection of features. In practice, it is found that the
performance of the selected feature subsets is also related to the
choice of classifiers for pattern recognition tasks. The wrapper-
based approach [28] was therefore proposed, using a classifier
combined with some guided search mechanism to choose an
optimal selection from a given feature set.

D. Feature Analysis by Dimension Reduction

Standard dimension reduction or MDS techniques such as
PCA and Isomap [29] are often used to estimate an embedding
dimension of the high-dimensional feature space. PCA projects
high-dimensional data into low-dimensional space while pre-
serving the maximum variance. It has been found rather effec-
tive in pattern recognition tasks such as face and handwriting
recognition. The Isomap algorithm calculates the geodesic dis-
tances between points in a high-dimensional observation space
and then conducts eigenanalysis of the distance matrix. As the
output, new coordinates of the data points in a low-dimensional
embedding are obtained that best preserve their intrinsic geo-
desic distances. In this paper, we used PCA and Isomap to
explore the sparseness of the feature space and examine the
residuals of the chosen dimensionality to estimate how many
features at least should be included in a subset. The perfor-
mance of the selected subsets was then compared with that of
the reduced and transformed feature space obtained by MDS.

E. Feature Validation via Classification

Feature combination schemes generated from the selection
rankings were then further assessed using classifiers under
cross-validation. The following classification algorithms were
used in this paper: k-NN, an instance-based classifier weighted
by the reciprocal of distances [30]; naive Bayes, employing
Bayesian models in the feature space; multilayer perceptron
(MLP) and radial basis functions (RBFs), which are both neural
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TABLE II
FEATURE RANKING FOR SINGLE TONES

network classifiers; and SVM, which is a statistical learning al-
gorithm and has been widely used in many classification tasks.

IV. EXPERIMENT

A. Experiment Settings

We tackled the musical instrument-classification problem in
two stages: 1) instrument-type classification using samples of
individual instruments and 2) direct classification of individual
instruments.

A number of utilities were used for feature extraction and
classification experiments. The perception-based features were
extracted using the IPEM Toolbox [31]. The Auditory Toolbox
[32] was used to extract MFCC features. The MPEG-7 audio-
descriptor features were obtained using an implementation by
Casey [33]. Various algorithms implemented in Waikato Envi-
ronment for Knowledge Analysis (Weka) [34] were used for
feature selection and classification experiments.

Samples used in the first experiment were taken from the
previously mentioned UIOWA MIS collection. The collection
consists of 761 single-instrument files from 20 instruments,
which cover the dynamic range from pianissimo to fortissimo
and are played bowed or plucked, with or without vibrato,
depending on the instrument. All samples were recorded in the
same acoustic environment (an anechoic chamber) under the
same conditions. We realized that this was a strong constraint,
and our result might not generalize to a complicated setting
such as live recordings of an orchestra. To explore the potential
of various feature schemes for instrument classification in live
solo performance, solo-passage music samples were collected
from CD recordings from private collections and the University
of Otago Library.

B. Instrument Family Classification

1) Feature Ranking and Selection: We first simplified the
instrument-classification problem by grouping the instruments

into four families: piano, brass, string, and woodwind. For
this four-class problem, the best 20 features generated by the
three selection methods are shown in Table II. All of them
indicate that LAT and HD are the most relevant features. It is
important to note that the standard deviations of the MFCCs
are predominantly present in all three selections. Also, the
measures of the centroid and bandwidth, as well as the deviation
of flux, zero crossings, and mean of rms, can be found in each
of them. These selections are different from the best 20 features
selected by Livshin and Rodet [21], where MPEG-7 descriptors
were not considered. However, they also included bandwidth
(spectral spread), MFCC, and SC.

Classifiers were then employed to assess the quality of fea-
ture selection. A number of algorithms, including naive Bayes,
k-NN, MLP, RBF, and SVM, were compared on classification
performance based on tenfold cross-validation. Among these,
the naive Bayes classifiers employed kernel estimation during
training. A plain k-NN classifier was used here with k = 1.
SVM classifiers were built using sequential minimal optimiza-
tion, with RBF kernels and a complexity value of 100, with all
attributes being standardized. Pairwise binary SVM classifiers
were trained for this multiclass problem, with between 10 and
80 support vectors being created for each SVM. The structure
of MLP was automatically defined in the Weka implementation,
and each MLP was trained over 500 epochs with a learning rate
of 0.3 and a momentum of 0.2.

To investigate the redundancy of the feature set, we used the
IG filter to generate reduced feature sets of the best 20, best 10,
and best 5 features, respectively. Other choices, instead of IG,
were found to produce similar performance and, hence, are not
considered here. The performance of these reduced sets was
compared with the original full set with all 44 features. The
results are given in Table III.

These can be contrasted with the results presented in
Table IV, where 17 features were selected using a rank search
based on SVM attribute evaluation and the correlation-based
CfsSubset scheme implemented in Weka. This feature set,
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TABLE III
CLASSIFIER PERFORMANCE (IN PERCENTAGE)

OF THE INSTRUMENT FAMILIES

TABLE IV
PERFOMANCE (IN PERCENTAGE) OF CLASSIFIERS TRAINED

ON THE “SELECTED 17” FEATURE SET

TABLE V
PERFORMANCE (IN PERCENTAGE) IN CLASSIFYING THE

FOUR CLASSES (TENFOLD CROSS-VALIDATION)

denoted as “Selected 17,” includes CentroidD, BandwidthM,
FluxD, ZCRD, MFCC[2–6]M, MFCC10M, MFCC3/4/6/8D,
HD, LAT, and TC. It is noted that TC contributes positively
to the classification task, even though it is not among the top 20
ranked features. Here, the classification algorithms take similar
settings as those used to generate the results shown in Table III.
The performance of the “Selected 17” feature set is very close
to that of the full feature set. The k-NN classifier performs even
slightly better with the reduced feature set.
2) Evaluation of Feature Extraction Schemes: Since the

k-NN classifier produced similar performance in much less
computing time compared with SVM, we further used
1-NN classifiers to assess the contribution from each individual
feature scheme and improvements achieved through scheme
combinations. Apart from combining the schemes one by one,
another option was also considered: picking the top 50%
ranked attributes from each feature scheme, resulting in a 21-
dimension composite set, called the “Top 50% mix.” The results
are presented in Table V. Aside from overall performance,
classification accuracy on each instrument type is also reported.

From these results, it can be seen that, among the indi-
vidual feature subsets, MFCC outperforms both IPEM and
MPEG-7. This is different from the finding of Xiong et al. [12]
that reveals that MPEG-7 features give better results than
MFCC for the classification of sports audio scenes such as
applause, cheering, music, etc. The difference was however
marginal (94.73% versus 94.60%). Given that the scope of
this paper is much narrower, this should not be regarded as
a contradiction. Indeed, some researchers also found more fa-
vorable results using MFCC instead of MPEG-7 for instrument
classification [8], [10].

Fig. 1. Graphical representation of the reduced components. The x-axis gives
the component number, and the y-axis gives the relevant normalized residual
(in percentage). Only ten components are shown.

Fig. 2. Three-dimensional embedding of the feature space. There are 400
instrument samples, each with its category labeled: ×—“piano,” ◦—“string,”
+—“brass,” and ∗—“woodwind.” The three axes correspond to the trans-
formed first three dimensions generated by Isomap.

In terms of average performance of combination schemes
listed in Table V, the MFCC+MPEG-7 set produced the best
results, whereas the MPEG-7+IPEM set with 18 features gave
the poorest result. It is observed that the inclusion of MFCC is
most beneficial to the woodwind and string families, whereas
the inclusion of the MPEG-7 seems to boost the performance
on piano and woodwind. Generally, the more features that are
included, the better the performance. However, the difference
among 33, 37, and 44 features is almost negligible. It is in-
teresting to note that the “Selected 17” feature set produced
very good performance. The “Top 50% mix” set produced
a performance as high as 93%, slightly worse than that of
the “Best 20” set, probably due to the fact that the selection
was not done globally among all features. All these results,
however, clearly indicate that there is strong redundancy within
the feature schemes.

In terms of accuracy on each instrument type, the piano
can be rather accurately classified on most feature sets. The
MPEG-7 and IPEM sets seem to have problems in identifying
woodwind instruments, with which MFCC can cope very well.
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TABLE VI
CONFUSION MATRIX FOR ALL 20 INSTRUMENTS WITH TENFOLD CROSS-VALIDATION. ALL NUMBERS ARE IN PERCENTAGE

Combining MFCC with other feature sets can boost the perfor-
mance on woodwind significantly. The MPEG-7 set does not
perform well on string instruments either; however, a combi-
nation with either MFCC or IPEM can effectively enhance the
performance. These results suggest that these individual feature
sets are quite complementary to each other despite their strong
redundancy.
3) Dimension Reduction: Overall, when the total number

of included features is reduced, the classification accuracy
decreases monotonically. However, it is interesting to see from
Table III that, even with five features only, the classifiers
achieved a classification rate around 90%. In order to inter-
pret this finding, we used PCA and Isomap to reduce the
dimensionality of the full feature set. The two methods report
similar results. The normalized residuals of the extracted first
ten components using these methods are shown in Fig. 1. The
3-D projection of the Isomap algorithm, generated by selecting
the first three coordinates from the resulting embedding, is
shown in Fig. 2. The separability of the four classes already
starts to emerge with three dimensions. For both methods, the
residual falls under 0.5% after the fourth component, although
the dropping reported by Isomap is more significant. This
suggests that the data manifold of the 44-D feature space may
have an embedded dimension of four or five only.

As a test, the first five principal components (PCs) of the
complete feature set were extracted, resulting in weighted
combinations of MFCC, IPEM, and MPEG-7 features. A 1-NN
classifier trained with the five PCs reports an average accuracy
of 88.0% in a tenfold cross-validation, very close to that of the
“Best 5” selection given in Table III. This further confirms that
there is strong redundancy within and between the three feature
schemes.

C. Instrument Classification

1) Individual Instrument Sound Recognition: Next, all 20
instruments were directly distinguished from each other. We

TABLE VII
DATA SOURCES FOR THE SOLO-PHRASE EXPERIMENT

TABLE VIII
CONFUSION MATRIX FOR INSTRUMENT RECOGNITION IN

SOLO PASSAGES (PERFORMANCE IN PERCENTAGE)

chose to use 1-NN classifiers as they worked very quickly and
gave almost the same accuracies compared to SVM. A feature
selection process was conducted using correlation-based subset
selection on attributes searched by SVM evaluation. This re-
sulted in a subset of 21 features, including LAT, FluxM, ZCRD,
HD, CentroidD, TC, HC, RMSD, FluxD, and 12 MFCC values.
The confusion matrix for individual instrument classification
is given in Table VI. Instrument “a” is piano, and instruments
“b–f ” belong to the brass type, “g–j” to the string type, and
“k–t” to the woodwind type.

The overall average classification accuracy is 86.9%. The
performance, in general, is quite satisfactory, particularly for
piano and string instruments. Only one out of 20 piano samples
was wrongly classified (as oboe). Among the string instru-
ments, the most significant errors occurred for viola samples,
with an accuracy of 18/25 = 72%. Classification errors in
the woodwind category mainly occurred within itself, having
only sporadic cases of wrong classification into other fami-
lies. The woodwind instruments have the lowest classification
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TABLE IX
PERFORMANCE OF INSTRUMENT CLASSIFICATION COMPARED

accuracy compared with other instruments, but this may relate
to the limited number of woodwind data samples in the cur-
rent data set. The worst classified instrument is E� clarinet.
There is also a notable confusion between alto flute and bass
flute.
2) Instrument Recognition in Solo Phrases: Finally, a

preliminary experiment on instrument recognition in solo
phrases was conducted. For this experiment, one representative
instrument of each instrument type was chosen. These were
as follows: trumpet, flute, violin, and piano. To detect the
right instrument in solo passages, a classifier was trained on
short monophonic phrases. Solo excerpts from CD recordings
were tested on this classifier. The problem here is that these
solo phrases were recorded with accompaniment; thus, they
were often polyphonic in nature. Selecting fewer and clearly
distinguishable instruments for the trained classifier helps make
the problem more addressable. It is assumed that an instrument
is playing dominantly in the solo passages. Thus, its spectral
characteristics will probably be the most dominant, and the
features derived from the harmonic spectrum are assumed
to work.

The samples for the four instruments were taken from live
CD recordings. The trumpet passages sometimes have multiple
brass instruments playing. The flutes are accompanied by mul-
tiple flutes, a harp, or a double bass, and the violin passages are
sometimes flute- and string-accompanied. Passages of around
10-s length were segmented into 2-s phrases with 50% overlap.
Shorter segments seemed to have a tendency to lower classifica-
tion rates. The amount of music samples was basically balanced
across the four instrument types, as seen in Table VII.

The same SVM-based feature selection scheme used before
searched out 19 features for this task. These included the
following: ten MFCC values (mainly means), five MPEG-7
features (HD, HS, HV, TC, and SC), and four perception-
based features (CentroidM, FluxM, ZCRD, and RMSM). An
average accuracy of 98.4% was achieved over four instruments
using three-NN classifiers with distance weighting. The Kappa
statistic is reported as 0.98 for the tenfold cross-validation,
suggesting that the classifier stability is very strong. The confu-
sion matrix is shown in Table VIII. The numbers shown are in
percentage. The largest classification errors occurred with flute
being classified as piano.

Here, again, MFCC is shown to be dominant in classification.
To achieve a good performance, it is noted that the other two
feature schemes also contributed favorably and should also be
included.

D. Discussion

The scopes of some current studies and performance
achieved are given in Table IX, where the number of in-
struments and the classification accuracies (in percentages)
of instrument family and individual instrument classifications
are listed. It can be seen that our results are better than or
comparable with those obtained by other researchers. However,
it is noted that the number of instruments included is different
and that the data sources are different despite the fact that
most of these included the UIOWA sample set. The exact
validation process used to assess the classification performance
may be different as well. For instance, we adopted tenfold
cross-validation in all our experiments, whereas Kaminskyj and
Czaszejko [19] and others used leave-one-out cross-validation
instead.

Paired with a good performance level, the feature dimension-
ality of our approach is relatively low, with the selected feature
sets having fewer than or around 20 dimensions. On the other
hand, Eggink and Brown [20] used the same UIOWA sample
collection but a different feature scheme with 90 dimensions,
reporting an average recognition rate of only 59% on five
instruments (flute, clarinet, oboe, violin, and cello). Livshin
and Rodet [21] used 62 features and selected the best 20 for
real-time solo detection. Kaminskyj and Czaszejko [19] used
710 dimensions after PCA. In this paper, a 5-D set after PCA
also achieved a good classification accuracy. A notable work is
by Benetos et al. [22], where only six features were selected.
However, there were only six instruments included in their
study, and the scalability of the feature selection needs to be
further assessed.

Although we gave such a performance list in Table IX, the
comparison has to be made with a notion of care. This is
particularly true for the case of instrument recognition in solo
passages, as it is impossible to make fair comparison when there
are no widely accepted benchmarks and researchers have used
various performance CDs [8], [21].

V. CONCLUSION

In this paper, we presented a study on feature extraction and
evaluation for the problem of instrument classification. The
main contribution is that we investigated three major feature
extraction schemes, analyzed them using a number of feature
selection methods, and assessed the classification performance
of the individual feature schemes, combined schemes, and
selected feature subsets. A small embedding dimension of the
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feature space was obtained using MDS, confirming the strong
redundancy of the considered feature schemes.

For experiments on monotone music samples, a publicly
available data set was used to allow for the purpose of bench-
marking. Feature-ranking measures were employed, and these
produced similar feature selection outputs. Moreover, the per-
formance of the obtained feature subsets was verified using a
number of classifiers. The MPEG-7 audio descriptor scheme
contributed the first two most significant features (LAT and HD)
for instrument classification; however, as indicated by feature
analysis, MFCC and perception-based features dominated in
the ranked and SVM-based selections. It was also demonstrated
that, among the individual feature schemes, the MFCC feature
scheme gave the best classification performance.

It is interesting to see that the feature schemes adopted in
current research are all highly redundant as assessed by the
dimension reduction techniques. This may imply that an opti-
mal and compact feature scheme remains to be found, allowing
classifiers to be built quickly and accurately. The finding of
an embedding dimension as low as four or five, however, may
relate to the specific sound source files we used in this paper,
and its scalability needs further verification.

On the other hand, in the classification of individual in-
struments, even the full feature set would not help much in
distinguishing woodwind instruments. In fact, it was found
in our experiments on solo passage classification that some
MPEG-7 features were not reliable for giving robust classifi-
cation results with the current fixed segmentation of solo pas-
sages. For instance, attack time was not selected in the feature
scheme, but it could become a very effective attribute with the
help of onset detection. All these indicate that more research
works in feature extraction and selection are still necessary.

Apart from the timbral feature schemes we examined, there
are other audio descriptors in the MPEG-7 framework that
may contribute to better instrument classification, e.g., those
obtained from global spectral analysis such as spectral envelope
and spectral flatness [15]. Despite some possible redundancy
with the introduction of new features, it would be interesting to
investigate the potential gains that can be obtained. It would
also be interesting to see how the proposed approach scales
with increased feature numbers and increased amount of music
samples. For our future work, we intend to investigate these
issues along with the use of more live recorded music data and
also experiment on finding better mechanisms to combine the
feature schemes and improve the classification performance for
more solo instruments.
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