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Abstract—Keyframe selection has been crucial for effective
and efficient video content analysis. While most of existing
approaches represent individual frames with global features,
we for the first time propose a keypoint based framework to
address the keyframe selection problem so that local features
can be employed in selecting keyframes. In general, the selected
keyframes should be both representative of video content and
containing minimum redundancy. Therefore, we introduce two
criteria, Coverage and Redundancy, based on keypoint matching
in the selection process. Comprehensive experiments demonstrate
that our approach outperforms the state-of-the-art.

Index Terms—Keyframe selection, keypoint, interest point,
local features, video representation, video summarization

I. INTRODUCTION

THE proliferation of video acquisition devices and the
mounting interest of consumers in the access to video

repositories have significantly boosted the demand for effective
and efficient methods in retrieving and managing such multi-
media data. A video is structurally composed of a number
of stories, each story is depicted with a number of video
shots, and each shot is essentially a sequence of images (i.e.
frames) [1]. Due to the inherent temporal continuity of the
consecutive frames within a video shot, there exists a great
deal of redundant information among those frames. Therefore,
selecting a set of frames to represent a video shot has been
crucial for effective and efficient video content analysis.

Clustering based approaches [2] are proposed to group
all frames in a video shot and identify cluster centres as
keyframes. This is intuitive as the selected keyframes represent
the prominent visual appearances and variations within a shot.
Li et al. [3] turned the task of keyframe selection into a
MINMAX rate distortion optimization problem for video sum-
marization and Ngo et al. [4] tackled the clustering problem
with the normalized cut algorithm. Recently, Panagiotakis et
al. [5] proposed a novel keyframe selection algorithm based
on three iso-content principles (Iso-Content Distance, Iso-
Content Error and Iso-Content Distortion). According to the
specific principle, the selected keyframes are equidistant in
the video content curve and the most appropriate number
of key frames is automatically estimated in supervised or
unsupervised manners.
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Most of these approaches are however mainly subject to
the following two limitations. First, they highly rely on global
features such as color, texture and motion information, though
adapting them to local features may be possible. As a result,
local details of frames will be neglected, which makes the
selected keyframes less representative, though global features
coarsely represent visual characteristics of an image. Second, it
is difficult to decide how many keyframes should be selected.
For example, it is always challenging to set an appropriate
threshold when two adjacent frames are compared. For the
clustering based approaches, it is generally an open issue to
set a reasonable number of clusters without prior knowledge.

Recently, local features such as the scale-invariant feature
transform (SIFT) descriptor [6] have played a significant role
in many application domains of visual content analysis such
as object recognition and image classification due to their
distinctive representation capacity. Hence, it would be ben-
eficial to characterize each frame with local visual descriptors
derived from the keypoints within the frame, and keyframe
selection is to identify a number of frames whose keypoints
are representative for the scene.

In light of the above observations, we propose a keypoint
based keyframe selection framework summarized as follows.
Firstly, keypoints are identified from each frame and descrip-
tors are extracted for each keypoint. Secondly, a global pool
of unique keypoints is formed to represent the whole video
shot through keypoint matching. Finally, representative frames
which best cover the global keypoint pool are chosen as
keyframes. Two criteria, namely Coverage and Redundancy
[7], are devised to ensure that each keyframe is selected to
maximize the coverage of the keypoint pool and to minimize
introducing redundant keypoints.

II. KEYPOINT BASED VIDEO SHOT REPRESENTATION

A. Keypoint Matching

Lowe’s SIFT descriptor [6] is utilized for keypoint extrac-
tion and representation, though many other local features [8]
are also applicable to our approach. The SIFT descriptor of
each keypoint is a 128-dimension feature vector (a 4×4 array
of orientation histograms with 8 orientation bins in each).

Straightforward keypoint matching based on SIFT descrip-
tors will result in many false matches. Lowe proposed to
improve matching robustness by imposing ratio test criterion
(i.e. the ratio of the nearest neighbor distance to the second
nearest neighbor distance is greater than a given threshold)
[6]. However, there still exist two challenging problems.

Firstly, the cost of keypoint matching between two target
frames is high. To exhaustively match keypoints, we have
to calculate the distance between every pair of keypoints in
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Fig. 1. Illustration of Inter-window keypoint chaining with overlapped
windows, where k1, k2, and k3 are matched keypoints.

both frames, which is computationally expensive. In order
to relieve this problem and take advantage of the continuity
among adjacent frames, we adopt a matching strategy that
considers only those candidate keypoints within a certain
radius R of the target keypoint. Meanwhile, false matching
can also be reduced with such a constraint. Secondly, there
are a number of false-positive matches, and as a result, the
global pool of keypoints K would contain noisy keypoints.
To filter these false matches, the RANdom Sample Consensus
algorithm (RANSAC) [9] is iteratively invoked to detect sets
of geometrically consistent keypoint matches. This process is
repeated until no further large set of matches (e.g. five matches
in a group) can be found.

B. Keypoint Pool Construction

In order to build a global pool K from all keypoints kx in
each frame fi to represent the content of a video shot, ideally
every two frames fi and fj (a pair) within the shot should
go through keypoint matching. However, such a strategy is
very costly. Utilizing the inherent nature of visual continuity
among consecutive video frames, we propose an Inter-window
Keypoint Chaining scheme to constrain the pairing within a
temporal window of size W without losing the discriminative
power of keypoint matching, as illustrated in Fig. 1. Hence,
keypoints are only matched within a window and chained
across multiple windows. When a keypoint k1 in frame fi is
matched with another keypoint k2 in frame fj , and the same
keypoint k2 is matched with a third keypoint k3 in frame fm,
satisfying |i − j| <= W and |m − j| <= W , we link these
matches into a chain, which would finally contribute to the
same unique keypoint in the global pool K without matching
keypoints between fi and fm. As shown in our recent study
[10], the window size can be adaptively determined by calcu-
lating visual variations between consecutive frames in terms
of distribution correlation.

On the other hand, it may occur that true keypoint matches
are dropped during matching. In order to make the matching
more reliable, we also propose Intra-Window Keypoint Chain-
ing. As shown in Fig. 2, k1 is matched with k3 but not k2, and
k2 is matched with k3. In this case, k1, k2 and k3 will also
be linked by a single chain, which could ease the problem of
missed matching (e.g. k1 should be a true match with k2).

After the keypoint chaining on frames, each keypoint either
belongs to a chain of matched keypoints or becomes an
singleton. All singleton keypoints, which are very likely to
be noisy keypoints, are discarded. Each chain is represented

Fig. 2. Illustration of Intra-window keypoint chaining within one window,
where k1, k2, and k3 are matched keypoints and merged into one chain.

by its HEAD keypoint and the number of keypoints on that
chain, denoted by (kx, Nx). The global keypoint pool K is
then formed by aggregating all (kx, Nx). In order to reduce
noisy chains, we further filter less important/unstable global
keypoints by setting a threshold T for Nx.

III. KEYFRAME SELECTION

The goal of keyframe selection is to best represent a video
shot with a minimal number of frames. That is, the keyframes
are able to best represent the video shot while minimizing
redundancy among them. In our case, to ensure the best
representation, the keypoints of those keyframes should cover
the global keypoint pool as much as possible. Since this can
be formulated as a variation of the well-known Set Cover
Problem which has been proven to be NP-complete [11], we
adopt a greedy algorithm to approximately tackle this issue.
At first, we choose the frame with the highest number of
keypoints against the keypoint pool. Then, at each iteration,
a frame is chosen as a keyframe if it best helps improve the
coverage while minimizing redundancy. Therefore, we devise
two metrics, namely Coverage and Redundancy, to guide the
selection process.

In the selection process, the pool is separated into two sets,
Kcovered and Kuncovered. At the beginning of the process,
Kuncovered contains all keypoints in K and Kcovered is empty.
For frame fi, denote its keypoint set as FPi, then the Coverage
of the frame to the pool can be defined as the cardinality of
the intersection between FPi and the uncovered set:

C(fi) = |FPi ∩Kuncovered|. (1)

Likewise, Redundancy is defined as how many keypoints it
contains in Kcovered, reflecting how redundant it is based on
the covered content in the shot:

R(fi) = |FPi ∩Kcovered|. (2)

The influence of frame fi at an iteration is calculated in (3)
as a balance of C(fi) and R(fi) controlled by α.

Influence(fi) = C(fi)− αR(fi) (3)

A simplified illustration of the calculation is presented in
Fig. 3. In this example, f1 has higher coverage but also higher
redundancy than f2, so f2 will be favored during the selection.

At the end of each iteration, the frame with the highest
influence value and positive coverage will be selected as a
keyframe, and Kcovered and Kuncovered will be updated based
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Fig. 3. A toy sample of calculating of the influence of frames, where f2 is
selected because of its higher influence.

TABLE I
THE TESTING VIDEOS FROM THE OPEN VIDEO PROJECT

Video Name From
Frame

To
Frame

# of
Frames

v25 A New Horizon, segment 02 664 900 237
v28 A New Horizon, segment 05 3223 3440 218
v33 Take Pride in America, segment 03 540 650 111
v39 Senses And Sensitivity, Introduction to Lec-
ture 4 presenter

1838 1934 97

v40 Exotic Terrane, segment 01 1790 1989 200
v49 America’s New Frontier, segment 07 150 500 351
v57 Oceanfloor Legacy, segment 04 1600 1800 201
v58 Oceanfloor Legacy, segment 08 540 633 94
v63 Hurricane Force - A Coastal Perspective,
segment 03

867 1012 146

v66 Drift Ice as a Geologic Agent, segment 05 766 977 212

on the keypoints of the selected keyframe. The iteration repeats
until all the keypoints are covered or a predefined coverage
threshold of the pool K is reached.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental Settings

We conduct experiments with two datasets. The first dataset
is for case studies, consisting of 4 videos including the widely
used Foreman and Costguard videos and two TV news shots
(Tennis video and Zooming video). The second dataset is
constructed from the Open Video Project (http://www.open-
video.org) for quantitative evaluation. As described in Table
I, it consists of 10 video shots across several genres (e.g.
documentary, education, and history).

In our experiments, the results generally are not affected
when the matching radius R is set above 100 and the window
size W above 5. Hence we set the radius R to 100 (i.e. 100
pixels around a target keypoint) to reduce matching search
space without sacrificing matching accuracy even in fast-
motion scenes, and W to 5 so as to balance the computational
cost and chaining accuracy. The threshold T to filter the
unstable global keypoint affects the size of the keypoint pool
and thus the granularity of details it captures. Empirically we
have tried different settings in our experiments, but results
shown in the following section is based on T = 5 to reduce
noisy keypoints without losing noticeable details.

Our approach (denoted as KBKS in the figures) is compared
against three state-of-the-art approaches, Iso-content distance
[5], Iso-content distortion [5] and Clustering [2]. For the first

two approaches we use the same Color Layout Descriptor
as adopted in the original paper. For the clustering based
method, we adopt the CEDD feature [12], which is a histogram
representing color and texture features.

B. Case Studies

The sample frames for the four shots in discussion is
presented in Fig. 5. The results for the Foreman video are
displayed in Fig. 6. It is observed that our approach can capture
different details when different coverage threshold values are
specified. For example, the two frames under 73% coverage
capture the key content, the foreman and the building. When
the coverage is increased to 95%, different stages of the
smiling face are captured. However, such details are missing
in the results of the other methods, since they rely on global
features. Meanwhile, it is also noticed that our approach misses
the keyframe on the tower and sky. There are two reasons. One
is that the transition is very short and some keypoint chains
are discarded. The other is that there are not many keypoints
due to a large portion of the uniform region and the influence
score of those frames have been affected. In order to remedy
this issue, we take global features into account by replacing
(3) with the following equation:

InfluencNew(fi) =
C(fi)− αR(fi)
GolbalSim(fi)

, (4)

where

GolbalSim(fi) =
∑
j

Similarity(fi, fj). (5)

That is, the influence of a frame fi will be increased if it shares
low similarity (i.e. small GolbalSim(fi)) with other frames in
terms of color and edge histogram. As shown in Fig. 4, such a
simple strategy is able to effectively resolve the “missing sky”
problem, though not being used in our other experiments.

Fig. 4. New Keyframe selection results for the Foreman video.

For the Coastguard video (See Fig. 7) capturing that one
boat overtakes the other, our approach selects not only the
frames with both boats, but also more frames to get a higher
coverage of keypoints as the background of the boat (e.g. the
building and trees) keeps changing. The other two methods do
capture both boats, but do not reflect the background change
very well. In addition, from our selected keyframes, it seems
easier for audience to understand the overtaking process.

The Tennis video contains two actions of the player with
a very short panning and fading transition in between. Our
selection algorithm clearly identifies these two action frames
with a high keypoint coverage of 97%. The clustering-based
method achieves the similar result with the help of predefined
the number clusters (i.e., 2), and the Equidistance method
selects the first and last frames.
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Fig. 5. Sample frames of the Foreman, Coastguard, Tennis, and Zooming videos (from top to down).

Fig. 6. Keyframe selection results for the Foreman video.

The last video is a short zoom-out footage. Our approach
selects one keyframe near the end of the shot with a high
coverage of 86%, since the frames at the beginning are
part of such a keyframe. For the clustering-based method,
if the number of cluster is set to 1, we get the keyframe
with the middle frame of the shot. That is, clustering based
approaches generally take the frame with average information
as representative frames. For the Equidistance method, it has
the limitation of selecting both the first and the last frames as
a starting point, which is not necessary for many cases such
as zooming.

C. Quantitative Evaluation

The ground-truth keyframes of the videos described in Table
I are manually selected by three students with video processing
background. When calculating the metrics, we average the
results among the three ground-truth sets of keyframes. The
number of target keyframes is set to five. As for our approach,
we try different values of coverage starting from 50% until five
keyframes are generated. The following metrics are chosen:
Precision, Recall, F-score, and Dissimilarity.

Fig. 7. Keyframe selection results for the Coastguard video.

Fig. 8. Influence of X on the F-score.

A candidate keyframe is considered matched if being no
more than X frames apart from a ground truth keyframe.
A ground-truth keyframe will be matched with at most one
candidate keyframes. F-score is a combination of both the
precision and recall indicating the overall quality. Dissimilarity
measures the difference between the candidate keyframes and
the ground-truth keyframes. It is defined as:

Dissimilarity =
∑
fc

minftd(fc, ft), (6)

where fc is a candidate keyframe and ft is a ground-
truth keyframe, and d(fc, ft) is a distance measure of two
keyframes, which is the difference of their frame indices.

In order to explore the influence of X , various experiments
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Fig. 9. Influence of α on the F-score.

Fig. 10. Quantitative Evaluation on the second dataset in terms of Precision,
Recall and F-score

were conducted by varying X from 10 to 20 while fixing α
to 1 and T to 5. As shown in Fig. 8, the F-score of every
method increases and stabilizes. While setting a high value
for X does not reflect a true match, we set X to 15 in the
following experiments. Similarly, experiments were conducted
to explore the influence of α in (3) by setting X to 15 and T
to 5, and varying α from 0 to 2. As shown in Fig. 9, α does
influence the selection result, however, not in a significant way.
F-Score grows when α increases from 0 to 0.3, and stabilizes
between 0.3 and 1.2. This could be explained that a frame
with a higher coverage introduces more new visual content
and is more likely to introduce less redundancy. For the sake
of simplicity, we set α to 1 in the following experiments.

As illustrated in Fig. 10, our approach achieves better
performance in regards to precision, recall and F-score. The
dissimilarity result shown in Table II also indicates that the
results of our approach are more similar to the ground truth
compared to other methods.

D. Computational Complexity

In our experiment, the frame size of Foreman and Coast-
guard is 352 x 288, and frame size of the videos in the Open
Video project is 352 x 240. With a standard 3.0GHz Dual
core desktop computer, for a video shot of 300 frames (i.e. 10
seconds), the total time needed is roughly 150 seconds broken
down into 150 seconds for the first step (Section II.A) and the
second step (Section II.B) and less than 1 second for the third
step (Section II.C) and the fourth step (Section III).

The computational cost of our approach is largely affected
by the efficiency of Keypoint Extraction and Matching. As
for Keypoint Extraction, it costs about 0.02 second to process
one frame. Regarding Keypoint Matching, it takes about 0.1
second to process one frame-pair. Therefore, the time cost of
keyframe selection on a video shot with N frame is roughly

TABLE II
QUANTITATIVE EVALUATION ON THE SECOND DATASET: DISSIMILARITY

Clustering Iso-Content
Distance

Iso-Content
Distortion

KBKS KBKS-fast

35.3 29.72 30.72 27.5 28.1

N ∗ 0.02 +W ∗N ∗ 0.1 + 1, and complexity is O(N). When
N = 300 and W = 5, the time cost is about 150 seconds.

In order to reduce the computational cost, we utilized
the randomized kd-tree forest based matching algorithm [13]
within the window. The matching speed is about ten times
faster than the conventional matching algorithm. That is, the
computational cost of the fast matching algorithm is about 15
seconds for 300 frames. As shown in the rightmost column
of Fig. 10 and Table II, the performance of the fast algorithm
(namely KBKS-fast) is still comparable to the original scheme,
though approximated matching is employed in [13].

V. CONCLUSION

In this paper we present a keyframe selection framework
based on discriminative keypoints. A video shot is firstly
represented by a global pool of keypoints through keypoint
chaining. Secondly, a greedy algorithm is developed to select
suitable keyframes based on the two intuitive metrics of
Coverage and Redundancy. The experimental results on both
case studies and quantitative evaluation demonstrate that our
proposed approach is very promising. We will further apply
this approach to video summarization in the future.
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