Probabilistic Modelling: A Few Case Studies in Data Analysis and Performance Analysis

Jeremiah Deng

Information Science / Telecommunications Programme University of Otago

April 8, 2015 @ Sun Yat-sen University, Guangzhou

Acknowledgement

- Dr. Yuwei Xu
- ▶ Dr. Suet-Peng Yong
- Other collaborators
- ▶ Other inspiring researchers

Outline

Introduction

Common Distributions

Clustering

Case 1

Case 2

Performance Analysis

Queueing fundamentals

Case 3

Case 4

Outline

Introduction

Common Distributions

Clustering

Case 1

Case 2

Performance Analysis

Queueing fundamentals

Case 3

Case 4

Background

- Probability concepts have been around for some time.
 - Democritus: Everything existing in the universe is the fruit of chance.
 - ▶ Boethius: Chance, too, which seems to rush along with slack reins, is bridled and governed by law.
 - ▶ Caesar, Julius: *lacta alea est.* (The die is cast.)
 - ▶ **Einstein,** Albert: *I will never believe that God plays dice with the universe.*

Background

- Probability concepts have been around for some time.
 - Democritus: Everything existing in the universe is the fruit of chance.
 - ▶ **Boethius:** Chance, too, which seems to rush along with slack reins, is bridled and governed by law.
 - ▶ Caesar, Julius: lacta alea est. (The die is cast.)
 - ► Einstein, Albert: I will never believe that God plays dice with the universe.
- ▶ 宋人方岳:"不如意事常八九,可与人語無二三。"
- Pioneers: Leibniz, Pascal
- ▶ Laplace, Pierre Simon: It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge.

Probability in Information Sciences

- Artificial Intelligence
 - ▶ Probabilistic inference
 - Decisions under partial information
 - Processing signals (e.g., speech, images)
- Computer Networks
 - Channel scheduling
 - Packet collision
 - Queueing behaviour at routers
- Software Engineering
 - Model failure of safety-critical systems
- Data Compression
 - Shannon Theorem
 - Huffman coding

Outline

Introduction

Common Distributions

Clustering

Case 1

Case 2

Performance Analysis

Queueing fundamentals

Case 3

Case 4

Common Probability Distributions

- There are continuous and discrete probability distributions.
 - Uniform distribution
 - Normal distribution (aka Gaussian)
 - Bernoulli distribution
 - Binomial distribution
 - Poisson distribution
 - Exponential distribution
 - Pareto distribution

Gaussian Distribution

- Most prominent distribution in statistics.
- Central limit theorem: under mild conditions the sum of a large number of random variables is distributed approximately normally.
- $pdf: p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Exponential Distribution

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{otherwise} \end{cases} \text{ and } F(x) = 1 - e^{-\lambda x}$$

- $E(X) = 1/\lambda$, $Var(X) = 1/\lambda^2$
- Models
 - ▶ Life span of equipments, call duration, job processing time ...
 - ⇒ Question: How likely does it last longer than average?

Poisson Distribution

- ▶ Models random occurrence of *discrete* events.
 - Service requests received per hour.
 - ▶ Number of packets arriving at a node per second.

►
$$P(n) = \frac{e^{-\lambda}\lambda^n}{n!}, n = 0, 1, 2, ...$$

$$ightharpoonup E(n) = \lambda = Var(n)$$

Age Distribution of Populations

Guess how would it look like?

Age Distribution of Populations

Guess how would it look like?

Age Distribution of Populations

Guess how would it look like?

▶ Discussion point: Will the age distribution of the populations affect the outcome of population-based optimization?

Outline

Introduction

Common Distributions

Clustering

Case 1

Case 2

Performance Analysis

Queueing fundamentals

Case 3

Case 4

Clustering

- Clustering algorithms assume data distributions within the clusters.
- Gaussian E-M: assume Gaussian ellipsoids.
 - k-means is a special case of GEM.
- Mixture of Gaussian models can be explored for classification, and anomaly detection.

Case 1: Scene analysis and novelty detection

- ► S-P Yong et al., Pattern Recog., 45(9), 2012.
- ► 14×14 label co-occurrence matrices as 'feature code'
- Clusters reviewed by PCA
- Are they Gaussian?

1-D Gaussian modeling

- High-dimensional space tricky to model
- ► Resort to modelling point-to-centre distances ©
- Q-Q plot seems okay
- $\sim \chi^2$ goodness-of-fit test: *p*-value=0.085 (null hypothesis *not* rejected)
- A simple threshold used for outlier detection

The Quincunx

http://www.mathsisfun.com/data/quincunx.html

Case 2: Learning the *k* in *k*-means

- Lacking prior knowledge, often we don't know k.
- ► The idea: Start with a low number (e.g., 1), and examine the clusters.
- ▶ If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - How to test the normality?
 - How to split?

Case 2: Learning the *k* in *k*-means

- ► Lacking prior knowledge, often we don't know *k*.
- ► The idea: Start with a low number (e.g., 1), and examine the clusters.
- ▶ If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - How to test the normality?
 - ► How to split?
 - Can we kill two birds with one stone?

Case 2: Learning the *k* in *k*-means

- Lacking prior knowledge, often we don't know k.
- ► The idea: Start with a low number (e.g., 1), and examine the clusters.
- ▶ If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - How to test the normality?
 - ► How to split?
 - ▶ Can we kill two birds with one stone? 一箭雙雕

G-means (G. Hamerly & C. Elkan, NIPS 2003)

Algorithm 1 G-means(X, α)

Input: X - dataset, α - a confidence level

Output: k cluster centres C

- 1: Initialize C as a set of centres (usually $C \leftarrow \{\overline{x}\}\)$
- 2: $C \leftarrow \text{kmeans}(C, X)$.
- 3: for all $c_j \in C$ do
- 4: Let $C^{(j)} = \{x_i | \text{class}(x_i) = j\}$ be the set of datapoints assigned to center c_j .
- 5: Use a statistical test to detect if each $C^{(j)}$ follows a Gaussian distribution (at confidence level α).
- 6: If the data look Gaussian, keep c_i . Otherwise replace c_i with two centres.
- 7: end for
- 8: **Repeat** from step 2 until no more centres are added.

How to test a cluster?

How to test a cluster?

- ▶ Initialize two centres c₁ and c₂; re-cluster.
- ▶ Get $v = c_1 c_2$, and project data vector x_i onto v: $x_i' = \langle v, x_i \rangle / ||v||$. Normalize X' to zero mean and variance 1.
- ► Calculate empirical cumulative density function $z_i = F(x'_{(i)})$, and the Anderson-Darling statistics $A^2(Z) = -\frac{1}{n} \sum_i (2i-1) [\log(z_i) + \log(1-z_{n+1-i})] n$
- ▶ If statistics within range of the critical value, keep the original centre, and discard $\{c_1, c_2\}$; otherwise, replace the current centre with $\{c_1, c_2\}$.

Another Take on Initialization

- ▶ What if we want a one-shot clustering with *k* clusters?
- Requires a better way to do initialization.
- ► Authur & Vassilvitskii (2007): k-means++: The Advantages of Careful Seeding

Algorithm 2 k-means++(X, k)

Input: X - dataset, k: number of cluster centres

Output: $C = \{c_i\}$: a set of k initial centres

- 1: Take one centre c_1 , chosen uniformly at random from X.
- 2: Take a new centre c_i , choosing $x \in X$ with probability $\frac{D(x)^2}{\sum_{x \in X} D(x)^2}$.
- 3: Repeat Step 2 until we have taken k centres altogether

D(x): the shortest distance from data point x to the closest centre.

Outline

Introduction

Common Distributions

Clustering

Case 1

Case 2

Performance Analysis

Queueing fundamentals

Case 3

Case 4

Stochastic Processes

- Over a continuous time parameter, SP is defined as a collection of random variables.
 - ▶ Denoted as $\{X_t\}$, $t \in R$.
- Over a discrete time parameter, is defined as a collection of random variables.
 - ▶ Denoted as $\{X_n\}$, $b \in Z$.
- These random variables are related and defined in the same probability space.
- Stationary stochastic process: statistics of the process will not vary over time.

Point Process

- Point process (aka counting process), is a process with random occurrence of points on a line.
- ▶ Denoted as $\{N(t), t \ge 0\}$.
 - Number of customers arriving in a shop during time of [0, t).
- ▶ If s < t, then $N(s) \le N(t)$.
- ▶ Increment N(s) N(t): Number of event occurrence within (s, t).

Poisson Process

- N has stationary increments.
- N has independent increments.
- Probability of 1 arrival in small interval h:

▶
$$P[N(h) = 1] = \lambda h + o(h)$$
.

▶ Probability of 2 or more arrivals in *h*:

▶
$$P[N(h) \ge 2] = o(h)$$
.

Such a point process is a Poisson Process with a rate of $\mu > 0$.

Graphical Representation

- Markov Chains are used to describe system state transition in a Poisson process.
- ▶ A point process counting arrivals only: always growing
- Birth-death process can be used for queueing modeling.
 - Right links represent birth or arrival;
 - Left links are for death or departure.

Kendall Notation (A/B/c/K/m/Z)

- ▶ A: interarrival time distribution
- B: service time distribution
 - M for exponential
 - G for general
- c: number of servers
- Optional:
 - K: maximum number of allowed customers
 - ▶ *m*: size of the customer population
 - Z: queueing discipline, typically FIFO

M/M/1 Queuing

- ▶ Interarrival time: exponentially distributed, mean= $1/\lambda$
- lacksquare Job processing time: exponentially distributed, mean=1/ μ
- Steady state requires $\lambda < \mu$
- FIFO
- One server
- ▶ Chances the server is busy: $P[N \ge 1] = 1 p_0 = \rho$.
- ▶ Expected number in system: $L = E\{N\} = \sum_{n} np_n = \frac{\rho}{1-\rho}$

A Little Variation to M/M/1

- ▶ In M/M/1, there is no limit on the queue length.
- In reality, services usually don't support unlimited queueing (memory, ports etc.)
- If a customer finds no available position in a limited queue, it is supposed to disappear!

M/M/1/K Analysis

► Transition diagram

- ► Steady state solutions:
 - $\sum_{n=0}^{K} p_n = 1$

Expected Customer Numbers

Solution to the probabilities:

$$p_n = \rho^n (1 - \rho)/(1 - \rho^{K+1}).$$

Expected customer number in system:

$$L = E\{N\} = \sum_{n=0}^{K} n p_n = \frac{\rho}{1-\rho} - \frac{(K+1)\rho^{K+1}}{1-\rho^{K+1}}$$

- Probability that an arriving customer is rejected is (simply)
 p_κ.
- Rejection rate is therefore $p_K \lambda$.
- Actual arrival rate into the system is
 - $\lambda' = (1 p_K)\lambda.$

Case 3: Video streaming on wireless multi-hop networks

- ► Each node subject to MAC contention, interference, load, limited buffer, and other overhead ...
- ► Treated as M/M/1/K to form a Jackson network
- ▶ What is the best routing metric: #hops, load, delay ...?

Our Problem(s)

- ▶ In reality, we know λ , but not μ ...
- ▶ We do know Q ($Q \le K$), and λ_d
- ▶ The question: how to estimate μ , so that the processing time for each node can be derived.
- ▶ Hang on how do you know you are handling Poisson traffic?

Simulation Settings

► Network Simulator 2 (NS-2) + EvalVid in an IEEE 802.11b/g networks of grid topologies: 5 × 5, 7 × 7, 9 × 9, 15 × 15

Parameters	Values	
Distance between two neighbours	150m	
Antenna Type	Omnidirectional	
Standard	802.11b	
Transmission Range	250m	
Transmission Rate	11 Mbits/s	
Packet Size	1024 bytes	
Queue Size	50 packets per node	
Video Format	H.264/MEPG4	
Duration	29 ∼ 66s	
Number of Streams	3 ~ 7	
Minimum number of hops	4	

Poisson Inflow / Outflow

Chi-Square Test Results

For video 'Highway':

Node	Inflow		Outflow	
Node	DF	χ^2	DF	χ^2
N30	6	12.1596	6	12.1198
N36	5	7.3989	6	10.6659
N31	6	11.1698	6	10.9301

For video 'Grandma':

Node	Inflow		Outflow	
Node	DF	χ^2	DF	χ^2
N34	5	5.2467	5	1.4930
N41	5	4.3583	5	6.0237
N49	5	1.2288	5	4.3098

Our assumption on Poisson traffic holds on the significance level of $\alpha = 0.05$.

Case 4: Mobility Modelling and Simulation in DTNs

- Delay Tolerant Networks: opportunistic forwarding, e.g., Vehicular ad hoc networks
- Simulators use simple motion models such as Random Walk and Random Waypoint etc.
- Real traces are available but few
- Question: how good are the motion models in simulations?
- ► Karagiannis et al. (MobiCom'07): Power law and exponential decay of inter contact times between mobile devices.

Power Law in Real Trace Data

Dichotomy exists

- Good linear fitting up to day-level (power law)
- ► Then exponential delay follows

Dichotomy Generated by Simulated Motion Patterns

 Simple motion patterns (e.g. Random Waypoint) generate similar effects

Elsewhere

- Dirichlet distributions widely used for topic modelling in text and multimedia content analysis
- Markov chain models for weather and renewable energy data modelling and simulation
- ... (almost) the entire Machine Learning field
- ... Your contributions ©

La vita è bella

美麗人生 - 1997