Probabilistic Modelling: A Few Case Studies in Data Analysis and Performance Analysis

Jeremiah Deng

Information Science / Telecommunications Programme
University of Otago

April 8, 2015 @ Sun Yat-sen University, Guangzhou
Acknowledgement

- Dr. Yuwei Xu
- Dr. Suet-Peng Yong
- Other collaborators
- Other inspiring researchers
Outline

Introduction

Common Distributions

Clustering
 Case 1
 Case 2

Performance Analysis
 Queueing fundamentals
 Case 3
 Case 4
Outline

Introduction

Common Distributions

Clustering
 Case 1
 Case 2

Performance Analysis
 Queueing fundamentals
 Case 3
 Case 4
Background

- Probability concepts have been around for some time.
 - **Democritus**: *Everything existing in the universe is the fruit of chance.*
 - **Boethius**: *Chance, too, which seems to rush along with slack reins, is bridled and governed by law.*
 - **Caesar, Julius**: *Lacta alea est.* (The die is cast.)
 - **Einstein, Albert**: *I will never believe that God plays dice with the universe.*
Background

- Probability concepts have been around for some time.
 - **Democritus:** *Everything existing in the universe is the fruit of chance.*
 - **Boethius:** *Chance, too, which seems to rush along with slack reins, is bridled and governed by law.*
 - **Caesar, Julius:** *lacta alea est. (The die is cast.)*
 - **Einstein, Albert:** *I will never believe that God plays dice with the universe.*

- 宋人方岳：“不如意事常八九，可与人語無二三。”

- **Pioneers:** Leibniz, Pascal

- **Laplace, Pierre Simon:** *It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge.*
Probability in Information Sciences

- Artificial Intelligence
 - Probabilistic inference
 - Decisions under partial information
 - Processing signals (e.g., speech, images)

- Computer Networks
 - Channel scheduling
 - Packet collision
 - Queueing behaviour at routers

- Software Engineering
 - Model failure of safety-critical systems

- Data Compression
 - Shannon Theorem
 - Huffman coding
Outline

Introduction

Common Distributions

Clustering
 Case 1
 Case 2

Performance Analysis
 Queueing fundamentals
 Case 3
 Case 4
There are continuous and discrete probability distributions.

- Uniform distribution
- Normal distribution (aka Gaussian)
- Bernoulli distribution
- Binomial distribution
- Poisson distribution
- Exponential distribution
- Pareto distribution
Most prominent distribution in statistics.

Central limit theorem: under mild conditions the sum of a large number of random variables is distributed approximately normally.

pdf: \(p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)
Exponential Distribution

\[p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad F(x) = 1 - e^{-\lambda x} \]

\[E(X) = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2} \]

Models

- Life span of equipments, call duration, job processing time ...

⇒ Question: How likely does it last longer than average?
Poisson Distribution

- Models random occurrence of discrete events.
 - Service requests received per hour.
 - Number of packets arriving at a node per second.

\[
P(n) = \frac{e^{-\lambda} \lambda^n}{n!}, \quad n = 0, 1, 2, \ldots
\]

- \(E(n) = \lambda = \text{Var}(n) \)
Age Distribution of Populations

▶ Guess how would it look like?
Age Distribution of Populations

▶ Guess how would it look like?
Age Distribution of Populations

- Guess how would it look like?

- Discussion point: Will the age distribution of the populations affect the outcome of population-based optimization?
Outline

Introduction

Common Distributions

Clustering
 Case 1
 Case 2

Performance Analysis
 Queueing fundamentals
 Case 3
 Case 4
Clustering

- Clustering algorithms assume data distributions within the clusters.
- Gaussian E-M: assume Gaussian ellipsoids.
 - k-means is a special case of GEM.
- Mixture of Gaussian models can be explored for classification, and anomaly detection.
Case 1: Scene analysis and novelty detection

- S-P Yong et al., *Pattern Recog.*, 45(9), 2012.
- 14×14 label co-occurrence matrices as ‘feature code’
- Clusters reviewed by PCA
- Are they Gaussian?
1-D Gaussian modeling

- High-dimensional space tricky to model
- Resort to modelling point-to-centre distances 😊
- Q-Q plot seems okay
- χ^2 goodness-of-fit test: p-value=0.085 (null hypothesis not rejected)
- A simple threshold used for outlier detection
The Quincunx

http://www.mathsisfun.com/data/quincunx.html
Case 2: Learning the k in k-means

- Lacking prior knowledge, often we don’t know k.
- The idea: Start with a low number (e.g., 1), and examine the clusters.
- If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - How to test the normality?
 - How to split?
Case 2: Learning the k in k-means

- Lacking prior knowledge, often we don’t know k.
- The idea: Start with a low number (e.g., 1), and examine the clusters.
- If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - *How* to test the normality?
 - *How* to split?
 - Can we kill two birds with one stone?
Case 2: Learning the k in k-means

- Lacking prior knowledge, often we don’t know k.
- The idea: Start with a low number (e.g., 1), and examine the clusters.
- If a cluster passes Gaussian test, keep it; otherwise split.
- Questions:
 - *How* to test the normality?
 - *How* to split?
 - Can we kill two birds with one stone? 一箭双雕
Algorithm 1 G-means(X, α)

Input: X - dataset, α - a confidence level
Output: k cluster centres C
1: Initialize C as a set of centres (usually $C \leftarrow \{\bar{x}\}$)
2: $C \leftarrow \text{kmeans}(C, X)$.
3: for all $c_j \in C$ do
4: Let $C^{(j)} = \{x_i|\text{class}(x_i) = j\}$ be the set of datapoints assigned to center c_j.
5: Use a statistical test to detect if each $C^{(j)}$ follows a Gaussian distribution (at confidence level α).
6: If the data look Gaussian, keep c_j. Otherwise replace c_j with two centres.
7: end for
8: Repeat from step 2 until no more centres are added.
How to test a cluster?

1. Initialize two centres c_1 and c_2; re-cluster.
2. Get $v = c_1 - c_2$, and project data vector x_i onto v: $x'_i = \frac{\langle v, x_i \rangle}{\|v\|}$.
3. Normalize X' to zero mean and variance 1.
4. Calculate empirical cumulative density function $z_i = F(x'_i)$, and the Anderson-Darling statistics $A_2(Z) = -\frac{1}{n} \sum_i (2i - 1)[\log(z_i) + \log(1 - z_{n+1-i})] - n$.
5. If statistics within range of the critical value, keep the original centre, and discard $\{c_1, c_2\}$; otherwise, replace the current centre with $\{c_1, c_2\}$.

How to test a cluster?

- Initialize two centres c_1 and c_2; re-cluster.
- Get $v = c_1 - c_2$, and project data vector x_i onto v:
 $x'_i = \langle v, x_i \rangle / \| v \|$. Normalize X' to zero mean and variance 1.
- Calculate empirical cumulative density function $z_i = F(x'_i)$, and the Anderson-Darling statistics
 $A^2(Z) = -\frac{1}{n} \sum_i (2i - 1)[\log(z_i) + \log(1 - z_{n+1-i})] - n$
- If statistics within range of the critical value, keep the original centre, and discard $\{c_1, c_2\}$; otherwise, replace the current centre with $\{c_1, c_2\}$.
Another Take on Initialization

- What if we want a one-shot clustering with k clusters?
- Requires a better way to do initialization.

Algorithm 2 \(k \text{-means+++}(X, k) \)

Input: \(X \) - dataset, \(k \): number of cluster centres
Output: \(C = \{c_i\} \): a set of \(k \) initial centres

1. Take one centre \(c_1 \), chosen uniformly at random from \(X \).
2. Take a new centre \(c_i \), choosing \(x \in X \) with probability \(\frac{D(x)^2}{\sum_{x \in X} D(x)^2} \).
3. Repeat Step 2 until we have taken \(k \) centres altogether

\(D(x) \): the shortest distance from data point \(x \) to the closest centre.
Outline

Introduction

Common Distributions

Clustering
 Case 1
 Case 2

Performance Analysis
 Queueing fundamentals
 Case 3
 Case 4
Stochastic Processes

- Over a continuous time parameter, SP is defined as a collection of random variables.
 - Denoted as \(\{X_t\}, \ t \in R \).
- Over a discrete time parameter, is defined as a collection of random variables.
 - Denoted as \(\{X_n\}, \ b \in Z \).
- These random variables are related and defined in the same probability space.
- Stationary stochastic process: statistics of the process will not vary over time.
Point Process

- Point process (aka counting process), is a process with random occurrence of points on a line.
- Denoted as \(\{N(t), t \geq 0\} \).
 - Number of customers arriving in a shop during time of \([0, t)\).
- If \(s < t \), then \(N(s) \leq N(t) \).
- Increment \(N(s) - N(t) \): Number of event occurrence within \((s, t)\).
Poisson Process

- N has stationary increments.
- N has independent increments.
- Probability of 1 arrival in small interval h:
 - $P[N(h) = 1] = \lambda h + o(h)$.
- Probability of 2 or more arrivals in h:
 - $P[N(h) \geq 2] = o(h)$.
- Such a point process is a Poisson Process with a rate of $\mu > 0$.
Graphical Representation

- Markov Chains are used to describe system state transition in a Poisson process.
- A point process counting arrivals only: always growing
- Birth-death process can be used for queueing modeling.
 - Right links represent birth or arrival;
 - Left links are for death or departure.
Kendall Notation \((A/B/c/K/m/Z)\)

- **A**: interarrival time distribution
- **B**: service time distribution
 - \(M\) for exponential
 - \(G\) for general
- **c**: number of servers
- **Optional:**
 - **K**: maximum number of allowed customers
 - **m**: size of the customer population
 - **Z**: queueing discipline, typically FIFO
M/M/1 Queuing

- Interarrival time: exponentially distributed, mean $= 1/\lambda$
- Job processing time: exponentially distributed, mean $= 1/\mu$
- Steady state requires $\lambda < \mu$
- FIFO
- One server
- Chances the server is busy: $P[N \geq 1] = 1 - p_0 = \rho$
- Expected number in system: $L = E\{N\} = \sum_n np_n = \frac{\rho}{1-\rho}$
A Little Variation to $M/M/1$

- In $M/M/1$, there is no limit on the queue length.
- In reality, services usually don’t support unlimited queueing (memory, ports etc.)
- If a customer finds no available position in a limited queue, it is supposed to disappear!
M/M/1/K Analysis

- Transition diagram

\[\begin{array}{c}
0 \xrightarrow{\lambda} 1 \xrightarrow{\lambda} 2 \xrightarrow{\lambda} \cdots \xrightarrow{\lambda} k-1 \xrightarrow{\lambda} k \\
\mu & \mu & \mu & \mu & \mu
\end{array} \]

- Steady state solutions:

- \[\sum_{n=0}^{K} p_n = 1 \]

- \[p_n = \left(\frac{\lambda}{\mu} \right)^n p_0, \quad 0 \leq n \leq K \] (K was \(\infty \) in \(M/M/1 \)).
Expected Customer Numbers

▶ Solution to the probabilities:

\[p_n = \rho^n (1 - \rho) / (1 - \rho^{K+1}). \]

▶ Expected customer number in system:

\[L = E\{N\} = \sum_{n=0}^{K} np_n = \frac{\rho}{1 - \rho} - \frac{(K + 1)\rho^{K+1}}{1 - \rho^{K+1}} \]

▶ Probability that an arriving customer is rejected is (simply) \(p_K \).

▶ Rejection rate is therefore \(p_K \lambda \).

▶ **Actual** arrival rate into the system is

\[\lambda' = (1 - p_K)\lambda. \]
Case 3: Video streaming on wireless multi-hop networks

- Each node subject to MAC contention, interference, load, limited buffer, and other overhead ...
- Treated as M/M/1/K to form a Jackson network
- What is the best routing metric: #hops, load, delay ...?
In reality, we know λ, but not μ ...

We do know Q ($Q \leq K$), and λ_d

The question: how to estimate μ, so that the processing time for each node can be derived.

Hang on - how do you know you are handling Poisson traffic?
Simulation Settings

- Network Simulator 2 (NS-2) + EvalVid in an IEEE 802.11b/g networks of grid topologies: 5 × 5, 7 × 7, 9 × 9, 15 × 15

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between two neighbours</td>
<td>150m</td>
</tr>
<tr>
<td>Antenna Type</td>
<td>Omnidirectional</td>
</tr>
<tr>
<td>Standard</td>
<td>802.11b</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>250m</td>
</tr>
<tr>
<td>Transmission Rate</td>
<td>11 Mbits/s</td>
</tr>
<tr>
<td>Packet Size</td>
<td>1024 bytes</td>
</tr>
<tr>
<td>Queue Size</td>
<td>50 packets per node</td>
</tr>
<tr>
<td>Video Format</td>
<td>H.264/MEPG4</td>
</tr>
<tr>
<td>Duration</td>
<td>29 ∼ 66s</td>
</tr>
<tr>
<td>Number of Streams</td>
<td>3 ∼ 7</td>
</tr>
<tr>
<td>Minimum number of hops</td>
<td>4</td>
</tr>
</tbody>
</table>
Poisson Inflow / Outflow

Histogram with Poisson PDF

number of incoming packets

Probability

Theoretical Quantiles
Sample Quantiles

number of outward packets

Probability

Theoretical Quantiles
Sample Quantiles
Chi-Square Test Results

For video ‘Highway’:

<table>
<thead>
<tr>
<th>Node</th>
<th>Inflow</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>χ^2</td>
</tr>
<tr>
<td>N30</td>
<td>6</td>
<td>12.1596</td>
</tr>
<tr>
<td>N36</td>
<td>5</td>
<td>7.3989</td>
</tr>
<tr>
<td>N31</td>
<td>6</td>
<td>11.1698</td>
</tr>
</tbody>
</table>

For video ‘Grandma’:

<table>
<thead>
<tr>
<th>Node</th>
<th>Inflow</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>χ^2</td>
</tr>
<tr>
<td>N34</td>
<td>5</td>
<td>5.2467</td>
</tr>
<tr>
<td>N41</td>
<td>5</td>
<td>4.3583</td>
</tr>
<tr>
<td>N49</td>
<td>5</td>
<td>1.2288</td>
</tr>
</tbody>
</table>

Our assumption on Poisson traffic holds on the significance level of $\alpha = 0.05$.
Case 4: Mobility Modelling and Simulation in DTNs

- Delay Tolerant Networks: opportunistic forwarding, e.g., Vehicular ad hoc networks
- Simulators use simple motion models such as Random Walk and Random Waypoint etc.
- Real traces are available but few
- Question: how good are the motion models in simulations?
- Karagiannis et al. (MobiCom’07): Power law and exponential decay of inter contact times between mobile devices.
Dichotomy exists

- Good linear fitting up to day-level (power law)
- Then exponential delay follows
Simple motion patterns (e.g. Random Waypoint) generate similar effects
Elsewhere

- Dirichlet distributions widely used for topic modelling in text and multimedia content analysis
- Markov chain models for weather and renewable energy data modelling and simulation
- ... (almost) the entire Machine Learning field
- ... Your contributions 😊
La vita è bella

美麗人生 - 1997